High Performance Materials for Batteries
The Battery Revolution

Electrical and electronic devices, stationary energy storage systems as well as eco-friendly electric transportation have all become integral to our daily lives. A key factor that can either spread or limit their development is what’s “under the hood”: Li-Ion batteries.

Their power and duration dually determine the efficiency and reliability of smartphones, tablets, laptops and other electronic devices. New materials and technologies that extend battery life while shortening charging time are in great demand.

The deployment of renewable energy sources poses the challenging task of balancing electricity demand and power supply over time. Here, Li-Ion batteries’ performance linked to energy density, safety and cell degradation is now more than ever of utmost importance.

Substituting traditional vehicles with environment-friendly electric vehicles will continue to increase as batteries become more reliable. Innovative materials and technologies are expected to increase durability, performance and safety during their lifetime.

Likewise, design freedom of battery packs and modulus, safe cooling systems and lightweight structures, represent another key challenge. This is especially true for the electric vehicles industry that today is calling for increased efficiency, safety, and engine geometries able to fit with new design concepts, as mobility transforms cars as we know them.

As we can see, the dynamic Li-Ion batteries technology roadmap brings a lot of challenges that can only be met thanks to a smart fit between new innovative materials and processing technologies.

Solvay’s high-performance solutions are helping to address the challenges of Today and Tomorrow in a variety of different ways.
A Look Into the Future

Solvay leverages its broad array of technologies and materials to expand its offer for next generation batteries, with a strong focus on solid state batteries.

From organic molecules to polymers, from inorganics to composite systems, Solvay works with its partners to develop new solutions for safer, cost effective and more performing batteries, in full alignment with the industry roadmap.

Working with us will allow you to accelerate your development programs not only with binders and electrolyte ingredients but also with novel solutions to enable Li-Metal protection, to reduce corrosion on current collectors, to increase battery power and many others.

Solvent Battery R&I Centers and Production Sites

Solvay’s global presence of production and technical capabilities provides the best support to customers and markets on both a global and local scale, making possible to test materials even in real, large-size cells.

Partnerships

The Li-Ion batteries industry is positioned at the crossroads of a large number of competencies. That is why Solvay is convinced that partnership projects are fundamental activities to combine expertise from different actors across the value chain and technology readiness levels and move forward the research on Lithium batteries.

Solvay is involved with a large number of partners in global funded projects which validate the utilization of its new innovative materials in real batteries projects as well as in specific collaborations with top level academic research organizations and startups all over the world.
High Performance Binders
for High Energy Density and Long Cycle Life

Solvay is the only PVDF supplier that uses both emulsion and suspension polymerization technologies, thereby producing a broad PVDF portfolio for cathode, anode and separator applications in Li-ion batteries.

Solef® PVDF Binders

Even if binder is used in a relatively low concentration in electrode formulation, it is very important for achieving a high energy density and long cycle life.

With Solvay’s proprietary polymerization technology, chemical modification has been introduced to Solef® PVDF. This has dramatically improved adhesion and long-term binding performance of Solef® PVDF. Therefore, higher energy density can be achieved by the reduction of binder content and at the same time a longer battery cycle life can be ensured.

Solef® PVDF binder evolution

<table>
<thead>
<tr>
<th>Grade Category</th>
<th>Description</th>
<th>General Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solef® 6020</td>
<td>PVDF homopolymer, medium-high molecular</td>
<td>• Standard binder grade</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>• Very good adhesion and battery performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Easy processing</td>
</tr>
<tr>
<td>Solef® 5120</td>
<td>Modified PVDF, medium-high molecular</td>
<td>• Proprietary polymerization technology</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>• Excellent adhesion and battery performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Easy processing</td>
</tr>
<tr>
<td>Solef® 5130</td>
<td>Modified PVDF, high molecular weight</td>
<td>• Proprietary polymerization technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Excellent adhesion and battery performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduced binder content for higher energy density</td>
</tr>
<tr>
<td>Solef® 5140</td>
<td>Modified PVDF, ultra-high molecular</td>
<td>• Proprietary polymerization technology</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>• Ultra-high adhesion for minimized binder content for higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific energy electrodes</td>
</tr>
</tbody>
</table>

Excellent Compatibility to Ni-rich Cathode Active Material

With the higher demand for energy density, Ni-rich cathode materials are widely used in high-end consumer electronic and electric vehicle batteries, Solef® PVDF provides the excellent anti-gelation performance during the battery cell production process to ensure that each cell delivers the best performance.

Ensuring Electrochemical Stability Up to 5 V Cells

The global Li-Ion battery technology roadmap suggests that one of the best ways to increase capacity is to increase the cell voltage. Because PVDF has adequate electrochemical stability for 5V cells, it can add value when used as a reference binder at the cathode.

Solef® 5130 and Solef® 5140 – Best-in-class Binder

Today, the first chemical modified Solef® grade, Solef® 5130, has become the benchmark for cathode binder in the market. Millions of Lithium-ion batteries contain Solef® PVDF binder, from a cell phone to the most advanced full battery electric vehicles.

Recently Solef® 5140 has been commercialized to further enhance the binder’s performance, providing highest cohesion and adhesion, extending life cycle and raising energy density with more reduced additions to the binder than ever before.

Solef® 5120 – Easier Processing

Solef® 5120 has been designed to have a medium-high molecular weight with chemical modification in order to provide excellent adhesion and battery performance with easier processing in terms of PVDF solution and electrode slurry preparation.
Separator Coating for Safe & Durable Li-Ion Batteries

In order to extend cycle life with a better interface between electrodes and separator as well as to achieve enhanced wettability and easy assembly, the separator can be coated with an additional layer of Solef® PVDF.

Solef® PVDF Solvent Based Coating

Solef® PVDF copolymer is normally used in separator coating, because it is easier for copolymer to develop good adhesion to the electrode at a certain lamination condition and it can be dissolved in a wider range of solvents. It can either be formulated with ceramic or used alone to coat the polyolefin porous substrate.

The chemical modification technology has also benefited the separator coating application. Solef® 75130 was developed as the best combination of excellent chemical resistance in electrolyte and outstanding lamination to electrodes.

Owing to the different processing requirements, Solvay can provide two categories of unique PVDF products for both solvent and water-based separator coatings.

Solef® PVDF Water Based Coating

As the leader among specialty polymer companies in the battery industry, Solvay is the first to commercialize water based PVDF for separator coating to avoid usage of irritant organic solvents for processing and to deliver its commitment of environmental protection in the separator industry.

With distinguished polymer characteristics and a unique production process, Solvay can now deliver various grades of water based PVDF emulsion XPH 800 series to meet different customer requirements.

Solef® PVDF grades for separators

<table>
<thead>
<tr>
<th>Grade Category</th>
<th>Description</th>
<th>Coating Process</th>
<th>General Characteristics</th>
</tr>
</thead>
</table>
| Solef® 21510 | PVDF copolymer powder | Solvent based | • Excellent lamination (dry and/or wet) to electrodes
• High adhesion for ceramics particles
• Low swelling
• Excellent cycling stability |
| Solef® 75130 | PVDF copolymer powder, chemical modified | Solvent based | • Outstanding chemical resistance in electrolyte, even at high temperature
• Excellent adhesion between electrode and coated separator
• Fast and complete wettability of separator
• Longer cycle life |
| Solef® XPH 838 | PVDF homopolymer latex, chemical modified | Water based | • Complete solvent-free coating process
• Variety of grades with different properties to meet customer needs
• Freedom for formulation to adapt to different lamination process (wet/dry)
• Excellent chemical resistance and good adhesion between electrode and separators
• Coating with filler possible to further enhance the battery safety and cycle life |
| Solef® XPH 884 | PVDF copolymer latex, low HFP content, chemical modified | Water based | |
| Solef® XPH 882 | PVDF copolymer latex, medium HFP content, chemical modified | Water based | |
| Solef® XPH 883 | PVDF copolymer latex, high HFP content, chemical modified | Water based | |
Fluorinated Compounds and Derivatives for Li-Ion Batteries’ Electrolyte

The use of fluorine has become a key element in the electrolyte of Li-ion batteries. Solvay offers F1EC (monofluoroethylene carbonate), F2EC (difluoroethylene carbonate) and TAB (tert-amylbenzene) additives together with a variety of new organic and inorganic fluorinated compounds, to be used in the electrolyte of Li-ion batteries.

These materials help achieve high voltage and safety of electrolyte systems, which are critical requirements for next-generation batteries.

F1EC

Improve the Safety and Energy Storage of the Battery

Once the Li-ion battery starts to be charged, F1EC constitutes a Solid Electrolyte Interphase (SEI) coating layer with high thermal stability on the surface of a negative electrode.

Compared to the common Vinylene Carbonate, F1EC creates a more flexible SEI layer with lower resistance value in the battery.

The use of F1EC leads to two main advantages:

• Improved battery safety: it inhibits rapid exothermic reaction when the battery is exposed to high temperature
• Improved energy storage: it doesn’t allow lithium loss in the battery caused by the reaction between lithium and electrolyte, and reduce the decomposition of the electrolyte

F2EC

Providing a Longer Cycle-Life to the Battery

High purity trans-F2EC and cis-F2EC are effective agents for the coating layers of the negative anode.

Especially when in combination with new anode materials such as Si/C composite or Si-anode, these higher fluorinated ethylene carbonate derivatives lead to higher capacity and a longer cycle life of the battery.

Battery test by F1EC & trans-F2EC graph

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity retention [%]</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

- F1EC: 3wt%
- trans-F2EC: 1wt%
- F1EC: 10 vol%
- Standard

Standard electrolyte: 1M LiPF₆ EC/DMC 1/2
Pouch cell battery at room temperature, LCO/Graphite
LiFSI Salts to Improve Low Temperature Performance

Solvay took advantage of the decades of experience in producing high purity and competitively priced conductive salts (LiTA, LiTFSI) to introduce to the market LiFSI. Our LiFSI, commercialized as a concentrated solution in battery grade solvent, combines best in class impurities with a very competitive price, as well as hassle-free handling and transportation due to its liquid form. Solvay owns licenses to manufacture such material worldwide.

Capacity at –20°C Comparison with 3 Different Sources of LiFSI

Charge capacity at –20°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Charge Capacity at –20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. LiPF₆</td>
<td>100.0%</td>
</tr>
<tr>
<td>Solvay LiFSI</td>
<td>111.1%</td>
</tr>
<tr>
<td>Source #1</td>
<td>106.1%</td>
</tr>
<tr>
<td>Source #2</td>
<td>110.3%</td>
</tr>
<tr>
<td>Source #3</td>
<td>108.1%</td>
</tr>
</tbody>
</table>

Discharge capacity at –20°C

<table>
<thead>
<tr>
<th>Source</th>
<th>Discharge Capacity at –20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. LiPF₆</td>
<td>100.0%</td>
</tr>
<tr>
<td>Solvay LiFSI</td>
<td>114.4%</td>
</tr>
<tr>
<td>Source #1</td>
<td>109.4%</td>
</tr>
<tr>
<td>Source #2</td>
<td>112.0%</td>
</tr>
<tr>
<td>Source #3</td>
<td>110.6%</td>
</tr>
</tbody>
</table>

LiFSI improves low temperature performance (LiPF₆ alone). Solvay’s LiFSI demonstrates good charge & discharge capacity.

NMC622/Graphite storage test at 60°C, 1 week at 4.2 V

- **Thickness [mm]**: 100% LiPF₆ 5.8, 1:9 LiFSI : LiPF₆ 5.7
- **Resistance at 1kHz [mΩ]**: 100% LiPF₆ 19, 1:9 LiFSI : LiPF₆ 18
- **Capacity after storage [mAh]**: 100% LiPF₆ 940, 1:9 LiFSI : LiPF₆ 930

LiFSI improves swelling property, resistance, residual and recovery capacity compared to LiPF₆ alone.
Solvay is a global leader in the advanced fluorinated technology (LiTFSI) which is based on a unique, sustainable, integrated and competitive patented production process.

The High Performance and Versatile Solution for Battery Applications

Thanks to its excellent chemical/thermal stability and conductivity, LiTFSI is used as an additive or main lithium salt to improve performance and safety of Li-Ion batteries liquid electrolyte and Lithium Metal Polymer (LMP) batteries, commonly used in computers, notebooks, mobile phones, power tools, e-bikes and electrical vehicles.

With a look to the future, LiTFSI processes the chemical resistance and solubility requested for use in the next-generation Li-Sulfur and Li-Air batteries.

LiTFSI salt additives for Li-Ion battery liquid electrolyte provide:

- Increased battery performance
- High intrinsic safety thanks to chemical and thermal stability
- Reduced battery costs over product lifetime
- Reduced battery filling time
- Aluminium collector passivation against corrosion in LiTFSI + LiPF₆ blends for high performance in high voltage and density battery

Benefits of LiTFSI as main salt for LMP batteries

- Best conductivity and chemical stability in combination with conductive polymers
- Compatibility with heated cell technologies (80 °C)
- Compatibility with polymer film extrusion

High Intrinsic Safety

LiTFSI ensures high intrinsic safety thanks to its chemical and thermal stability

- High stability up to 342 °C
- Soluble, chemically stable without generation of HF in presence of water

LiTFSI: Thermal stability up to 342 °C

LiTFSI: Chemical stability in water

LiTFSI is fully stable in presence of water

Quick decomposition of LiPF₆ in presence of water

Hydrolysis LiTFSI compared to LiPF₆ – In house data
Solvay 1M in EC:DMC, 20°C, H₂O 1% p/p Heating

LiTA

LiTA is a high purity conductive salt used in primary batteries and in promising applications for the future such as Lithium Sulfur. Solvay has been a pioneer in the production of Triflic Acid, with over 20 years experience, and can supply Triflic acid (pure and in aqueous solution) and Lithium Triflate (LiTA) both in aqueous solution and powder Extra Dry form.
Energain® Technology

for High Voltage Li-Ion Battery

Achieving high energy density at an affordable price without compromising safety is one of the key unmet needs of the battery industry. Energain® technology opens the door to the stabilization of unprecedented high voltage systems with a large variety of cathodes (LCO, Ni-rich NCM, LMNO), addressing the challenges of tomorrow’s batteries and reaching the full potential of advanced Li-ion technology.

Energain® F-Solvents & Formulations Enable to Achieve up to 5V in Systems Using Advanced Cathode Materials (Nickel Rich & LMNO)

- Increase battery energy density
- Improve battery cycle life at high voltage and high temperature
- Reduce battery swelling at high temperature
- Improve residual capacity at high temperature

Energain® technology enables extension of operating voltage and cell capacity

<table>
<thead>
<tr>
<th>Traditional spinel, olivine and layered cathodes</th>
<th>Nickel rich layered cathodes and blends</th>
<th>High voltage spinel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7V</td>
<td>4.3V</td>
<td>4.45V</td>
</tr>
</tbody>
</table>

Standard electrolyte components

- Solvent: Traditional Carbonate Solvents
- Reductive Additives: Traditional Organic Additives
- Specific Additives: Salt
- Note: Gassing, Mn Dissolution
- Many choices

Fluorinated electrolyte components

- Solvent: Fluroinated Solvent Blends
- Reductive Additives: Proprietary Additives
- Specific Additives: Salt blends
- Energain® Additives & Salts

Example of an Energain® electrolyte

- Advanced electrolytes acquired by 3rd party from major suppliers

18650 cell tests at 25°C with unengineered NMC532/Gr at 4.3V

- Tested by DuPont in next generation of cathodes

Coin cell tests at 55°C with engineered LMNO/Gr at 4.9V

- 2x performance vs standard electrolyte under same conditions

Commercial cells containing Energain® technology give 4x longer life versus leading next best alternatives
Battery Module and Pack Cell Advanced Solutions
Improved Safety, Performance and Lightweight

High Performance Cell Gaskets to Guard Battery Safety
Hyflon® PFA/MFA®, Tecnoflon® FKM for Cell Gaskets
As the current Li-Ion battery technology evolves, the demand for battery safety in electrified transportation and stationary storage applications is becoming higher and higher. By leveraging Solvay’s broad product portfolio and expertise in fluoropolymer technologies, we are now providing you with a broad list of products to ensure operational performance and safety of each cell.

<table>
<thead>
<tr>
<th>Grade Category</th>
<th>Description</th>
<th>General Characteristics</th>
</tr>
</thead>
</table>
| Hyflon® PFA P450 | Perfluoropolymer, medium molecular weight, high melt flow rate resin | • UL 95 V-0
• Chemical inertness
• Inherent flame resistance
• Exceptional dielectric property |
| Hyflon® MFA® 1041 | Perfluoropolymer, very high melt flow rate | |
| Tecnoflon® P959 | A medium viscosity, high fluorine (70%) peroxide curable fluoroelastomer | • Low post cure
• Superior mold flow
• Lack of mold fouling
• Excellent mold release
• Good chemical resistance |

With the usage of above-mentioned products, the cell gasket can achieve:
• Excellent sealing performance during operation
• High CTI
• Electrochemical resistance vs electrolyte
• Good processibility

Cell Frame and Module End-plate Solutions for Lighter & More Robust Batteries
Amodel® PPA, Ryton® PPS, Ixef® PARA
As the current Li-Ion battery technology evolves, the demand for battery pack energy density by volume is becoming higher, metal replacement by high performance specialty polymers provides various solution to reduce the weight of packaging while maintain the mechanical strength.

Solvay provides Amodel® PPA, Ryton® PPS and Ixef® PARA as the best candidate for the structural material within the battery module, such as cell frame or the module end-plate. Additionally, the high performance aromatic material can further provide:
• Component design flexibility
 (for complex part, few operation, etc.)
• Cost reduction
• Excellent chemical resistance
• Electrical insulation
Immerse Battery Cooling Agent – Enhanced Safety & Efficiency

Galden® PFPE Dielectric Fluid

As the mileage demand of electric vehicles increases to be comparable to conventional ICE vehicles, as well as the fast charging properties to ensure the continuous usage is required, the battery packs are now designed with higher energy density as well power density within the designated space. Safety, and the heat generation especially at fast charging mode brings the challenge to the traditional water-glycol cooling system. An innovative immersed battery cooling system with dielectric liquid fluoropolymers introduces the solution to the challenges faced by the industry.

Galden® PFPE is an excellent fluoropolymer liquid with extremely high dielectric property while good thermal conductivity, maintaining the battery in safe conditions, even at extreme cases (e.g. thermal runaway), providing:

- Excellent electrical insulation for high safety
- Inflammability even at very high temperature
- Good thermal conductivity by immersed cooling, e.g. heat dissipation during fast charging
- Higher volumetric battery energy density possible
- Broad product portfolio supporting an efficient system design flexibility

![Suggested operating temperature range](chart)

Cooling Agent

End-plate

Cell Frame