Detailed engineering properties are available for commonly used Ryton® PPS compounds and Ryton® PPS Alloy compounds. These feature industry standard test methods and typical end-use operating conditions. If you are unable to locate data for the test method or product required, please contact our technical experts for further assistance.

Abrasion & Friction

Thrust Washer Test

The dynamic coefficient of friction and wear rate of Ryton® PPS compounds has been determined using a Thrust Washer machine according to ASTM D 3702. In this test, a specimen having a ring-shaped test surface is rotated against a stationary steel washer at a specified speed and under a specified weight for a specified period of time, and the reduction in thickness of the test specimen is then measured. The dynamic coefficient of friction may also be determined from the torque on the rotating specimen during the test. These tests were performed dry, at 36 rpm (velocity 10 ft/min, 3.05 m/min), under a 50 pound (22.7 kg) test load (250 psi, 1.72 MPa).

 

Coefficient of Friction and Wear Resistance of Ryton® PPS Compounds

Ryton® PPS Compound Countersurface Test Duration Material COF Material Wear Rate Countersurface Wear Rate
    hours   g/hr in/hr mm/hr g/hr
R-4 52100 Steel (Rc 60) 10 0.50 1.2 x 10-2 2.2 x 10-3 5.5 x 10-2 7.0 x 10-3
BR42B 52100 Steel (Rc 60) 100 0.32 3.8 x 10-4 6.2 x 10-5 1.6 x 10-3 3.0 x 10-4
R-4-200NA 1018 Steel (Rc 20) 20 0.40 6.2 x 10-3 1.0 x 10-3 2.6 x 10-2 3.6 x 10-3
R-4-220BL 1018 Steel (Rc 20) 20 0.43 7.4 x 10-3 1.3 x 10-3 3.3 x 10-2 3.9 x 10-3
BR42B 1018 Steel (Rc 20) 160 0.39 3.7 x 10-4 6.0 x 10-5 1.5 x 10-3 2.1 x 10-4

 

Taber Abrasion Test

The abrasion resistance of Ryton® PPS compounds has been determined using the Taber abrasion apparatus according to ASTM D 1044. In this test, a flat plaque test specimen is mounted on a turntable in contact with a weighted abrasive wheel, and after a selected number of revolutions of the wheel at constant speed, the weight loss of the specimen is determined.

Taber Abrasion Testing of Ryton® PPS Compounds
      Weight Loss (g) After Indicated Number of Revolutions
Ryton® PPS Compound Wheel Load 500 1000 1500 2000 10000
R-4 CS-10 1 kg ----- 0.070 ----- ----- -----
R-4-02 CS-10 1 kg ----- 0.040 ----- ----- -----
R-4-220NA CS-10 1 kg ----- 0.054 ----- ----- -----
R-7-120NA CS-10 1 kg ----- 0.064 ----- ----- -----
BR111 CS-10 1 kg ----- 0.051 ----- ----- -----
BR42B CS-10 1 kg ----- 0.015 ----- ----- -----
XK2340 CS-10 1 kg ----- 0.031 ----- ----- -----
R-4-200BL CS-17 1 kg ----- 0.057 ----- ----- 0.625
R-4-220BL CS-17 1 kg 0.040 0.056 0.066 0.077 -----
R-7-120BL CS-17 1 kg 0.047 0.079 0.103 0.130 -----
XE5030BL CS-17 1 kg ----- 0.055 ----- ----- 0.632
XE4050BL CS-17 1 kg ----- 0.107 ----- ----- 0.976

 

Coefficient of Friction

The coefficient of friction of 40% glass fiber reinforced PPS (Ryton® R-4 PPS) was determined using the Alpha Molykote LFW-1 friction and wear test machine. The flat block test specimens were run against a steel ring at selected speeds under a 15 pound (6.8 kg) load. There appeared to be little difference in the static and dynamic coefficient of friction.

Coefficient of Friction of 40% Glass Fiber Reinforced PPS
  Speed COF
0 rpm (static) 0 ft/min (0 m/min) 0.50
100 rpm (dynamic) 29 ft/min (8.8 m/min) 0.55
190 rpm (dynamic) 55 ft/min (16.8 m/min) 0.53

 

Creep

Creep Charts for Ryton® PPS Compounds

XK2340 Tensile Creep

Ryton-XK2340-creep-data

 

E5030BL Tensile Creep

Ryton-XE5030BL-creep-data

 

​XE4050BL Tensile Creep

Ryton-XE4050BL-creep-data

 

R-7-220BL Tensile Creep

Ryton-R7220BL-creep-data

 

R-4 Tensile Creep

Ryton-R4-creep-data

 

R-7-120BL Tensile Creep

Ryton-R7120BL-creep-data

 

R-4-02XT Tensile Creep

Ryton-R402XT-creep-data

 

R-4-200BL Tensile Creep

Ryton-R4200BL-creep-data

 

BR42B Tensile Creep

Ryton-BR42B-creep-data

 

BR111 Tensile Creep

Ryton-BR111-creep-data

 

Fatigue

S / N Curves for Ryton® PPS Compounds

BR111 Flexural Fatigue

Ryton-BR111-flexural-fatigue

 

BR111 Tensile Fatigue

Ryton-BR111-tensile-fatigue

 

BR42B Flexural Fatigue

Ryton-BR42B-flexural-fatigue

 

R-4 Tensile Fatigue

Ryton-R4-tensile-fatigue

 

R-4-02XT Tensile Fatigue

Ryton-R402XT-tensile-fatigue

 

R-4-200BL Tensile Fatigue

Ryton-R4200BL-tensile-fatigue

 

R-7-120BL Tensile Fatigue

Ryton-R7120BL-tensile-fatigue

 

Mechanical Properties

Mechanical Properties of Ryton® PPS Compounds at Various Temperatures

Tensile Strength

Nominal Tensile Strength of Ryton® PPS Compounds from -40°C to 200°C

Ryton® PPS Compound   -40°C 

-40°F
23°C 

73°F
50°C 

122°F
75°C 

167°F
100°C 

212°F
150°C 

302°F
200°C 

392°F
R-4-200BL MPa 195 180 160 140 105 65 45
  kpsi 28 26 23 20 15 9,5 6,5
R-4-220BL MPa 190 175 160 145 110 65 50
  kpsi 28 25 23 21 16 9,5 7,5
R-4-230BL  MPa 135 130 130 130 110 70 45
  kpsi 20 19 19 19 16 10 6,5
R-4-240BL MPa 195 165 150 130 100 60 45
  kpsi 28 24 22 19 15 8,5 6,5
R-7-120BL MPa 175 135 120 120 100 70 50
  kpsi 25 20 17 17 15 8,5 6,5
R-7-220BL MPa 185 160 150 140 115 80 60
  kpsi 27 23 22 20 17 12 8,5
BR111BL MPa 220 190 165 155 120 75 55
  kpsi 32 28 24 23 17 11 8.0
BR42B MPa 220 190 165 155 120 75 55
  kpsi 32 28 24 23 17 11 8.0
XE5030BL MPa 160 130 110 95 75 45 35
  kpsi 23 19 16 14 11 7.5 6.0
XK2340 MPa 205 195 165 140 120 90 75
  kpsi 30 28 24 20 17 13 11

Test Method: ISO 527 

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.

 

Tensile Modulus

Nominal Tensile Modulus of Ryton® PPS Compounds from -40°C to 200°C

Ryton® PPS Compound   -40°C 

-40°F
23°C 

73°F
50°C 

122°F
75°C 

167°F
100°C 

212°F
150°C 

302°F
200°C 

392°F
R-4-200BL GPa 16 14 14 14 12 7.0 5.0
  Mpsi 2.4 2.1 2.1 2.1 1.8 1.0 0.7
R-4-220BL GPa 15 14 14 14 11 6.0 5.5
  Mpsi 2.2 2.1 2.1 2.1 1.6 0.9 0.8
R-4-230BL GPa 16 14 15 14 11 7.0 5.5
  Mpsi 2.4 2.1 2.2 2.1 1.6 1.0 0.8
R-4-240BL GPa 13 13 13 13 10 5.0 4.0
  Mpsi 1.9 1.9 1.9 1.9 1.5 0.7 0.6
R-7-120BL GPa 21 19 18 17 16 7.0 6.5
  Mpsi 3.1 2.8 2.6 2.5 2.4 1.0 1.0
R-7-220BL GPa 17 17 16 16 12 8.0 7.0
  Mpsi 2.5 2.5 2.4 2.4 1.8 1.2 1.0
BR111BL GPa 20 21 20 20 15 8.5 7.5
  Mpsi 2.9 3.1 2.9 2.9 2.2 1.2 1.1
BR42B GPa 17 16 16 15 12 7.5 6.0
  Mpsi 2.5 2.4 2.4 2.2 1.8 1.1 0.9
XE5030BL GPa 10 10 10 10 7.0 4.0 3.5
  Mpsi 1.5 1.5 1.5 1.5 1.0 0.6 0.5
XE4050BL GPa 12 11 11 10 7.5 4.0 3.5
  Mpsi 1.8 1.6 1.6 1.5 1.1 0.6 0.5
XK2340 GPa 18 15 12 11 9.5 7.5 7.0
  Mpsi 2.6 2.2 1.8 1.6 1.4 1.1 1.0

Test Method: ISO 527

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.

Stress/Strain

Stress / Strain Curves for Ryton® PPS Compounds

R-4-200BL Tensile Stress/Strain Curves

Ryton-R4200BL-tensile-stress-strain

 

R-7-120BL Tensile Stress/Strain Curves

Ryton-R7120BL-tensile-stress-strain

 

BR42B Tensile Stress/Strain Curves

Ryton-BR42B-tensile-stress-strain

 

R-4-220BL Tensile Stress/Strain Curves

Ryton-R4220BL-tensile-stress-strain

 

R-7-220BL Tensile Stress/Strain Curves

Ryton-R7220BL-tensile-stress-strain

 

BR111BL Tensile Stress/Strain Curves

Ryton-BR111BL-tensile-stress-strain

 

XE4050BL Tensile Stress/Strain Curves

Ryton-XE5030BL-tensile-stress-strain

 

XE5030BL Tensile Stress/Strain Curves

Ryton-XE5030BL-tensile-stress-strain

 

​XK2340 Tensile Stress/Strain Curves

Ryton-XK2340-tensile-stress-strain

 

​R-4-230BL Tensile Stress/Strain Curves

Ryton-R4230BL-tensile-stress-strain

 

R-4-240BL Tensile Stress/Strain Curves

Ryton-R4240BL-tensile-stress-strain

 

Weld Lines

Weld Line Strength

Weld lines are formed during the molding process when the melt flow front divides and then flows back together. Typically, the weld line interface is resin rich because the glass fibers tend not to cross the interface. The lack of glass fiber reinforcement across the interface results in lower mechanical strength along the weld line. Gate location and fill patterns should be planned so that weld lines will be eliminated or located in areas of minimal stress whenever possible. 

If weld lines must bear stress, the part design should compensate for the typical weld line strengths indicated below. Weld line strength is highly dependent on molding conditions, so the part and tool design should allow for rapid injection, a hot flow front, and thorough packing. Gas entrapment is very detrimental to weld line strength, so molds must be designed to avoid back filling and should be adequately vented in areas where weld lines form.

Nominal Weld Line Tensile Strength of Ryton® PPS Compounds
BR111 and BR111BL 45 MPa 6.5 kpsi
BR42B 55 MPa 8.0 kpsi
R-4 and R-4-02 40 MPa 6.0 kpsi
R-4-200NA and R-4-200BL 60 MPa 8.5 kpsi
R-4-220NA and R-4-220BL 55 MPa 8.0 kpsi
R-4-230NA and R-4-230BL 40 MPa 6.0 kpsi
R-4-240NA and R-4-240BL 80 MPa 11.5 kpsi
R-4XT and R-4-02XT 55 MPa 8.0 kpsi
R-7-120NA and R-7-120BL 45 MPa 6.5 kpsi
R-7-121NA and R-7-121BL 40 MPa 6.0 kpsi
R-7-220BL 45 MPa 6.5 kpsi
XE4050BL 45 MPa 6.5 kpsi
XE5030BL 50 MPa 7.5 kpsi
XE5515BL 65 MPa 9.5 kpsi
XK2340 60 MPa 8.5 kpsi

Test Method: ISO 527, double end gated specimens

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.