This presentation may contain forward-looking information. Forward-looking statements describe expectations, plans, strategies, goals, future events or intentions. The achievement of forward-looking statements contained in this presentation is subject to risks and uncertainties relating to a number of factors, including general economic factors, interest rate and foreign currency exchange rate fluctuations, changing market conditions, product competition, the nature of product development, impact of acquisitions and divestitures, restructurings, products withdrawals, regulatory approval processes, all-in scenario of R&D projects and other unusual items.

Consequently, actual results or future events may differ materially from those expressed or implied by such forward-looking statements. Should known or unknown risks or uncertainties materialize, or should our assumptions prove inaccurate, actual results could vary materially from those anticipated. The Company undertakes no obligation to publicly update or revise any forward-looking statements.
MORE SUSTAINABLE MOBILITY

ADVANCED MATERIALS

Roger Kearns
Member of the Executive Committee
GLOBAL LEADER IN ADVANCED MATERIALS

Technology leadership

Strong customer partnerships

Application expertise

Developing innovative solutions to create sustainable value for our customers

2015 PF Net sales € 4,503 m

EBITDA € 1,079 m

EBITDA margin 24%

R&I / Sales 4%

Headcount ~9,700

50% AUTOMOTIVE & AEROSPACE

4% AGRO, FEED & FOOD

7% RESOURCES & ENVIRONMENT

7% BUILDING & CONSTRUCTION

9% INDUSTRIAL APPLICATIONS

9% CONSUMER GOODS & HEALTHCARE

14% ELECTRICAL & ELECTRONICS

September 29, 2016

2016 Capital Markets Day
Unmatched Portfolio for Sustainable Mobility

Application Areas

<table>
<thead>
<tr>
<th>Lightweighting</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structural & semi-structural parts</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td>Engine components</td>
</tr>
<tr>
<td>Electrification</td>
<td>Electrical system</td>
</tr>
<tr>
<td></td>
<td>Lithium-ion battery system</td>
</tr>
<tr>
<td>Powertrain Efficiency</td>
<td>Thermal & air management systems</td>
</tr>
<tr>
<td></td>
<td>Engine management systems</td>
</tr>
<tr>
<td>Green Technologies</td>
<td>Energy-efficient tires</td>
</tr>
<tr>
<td></td>
<td>Catalysis system</td>
</tr>
</tbody>
</table>

Technologies

- Thermoset composites
- Thermoplastic composites
- Specialty resins, compounds and adhesives
- Foam/sandwich
- High-performance polymers
- Fluoro chemicals
- Ingredient systems for electrolyte
- High-performance polymers and compounds
- Highly dispersible silica
- Rare Earth systems

Leveraging broad technologies to drive solutions
LEAD ACTOR WITH UNMATCHED MATERIALS TECHNOLOGY & INTEGRATION KNOW-HOW

Solvay Strengths
- Industrialization
- Thermoplastics
- Automotive partnerships

Cytec Strengths
- Application expertise
- Thermoset composites
- Aerospace partnerships
- Long-term customer relationships

Customer intimacy
Innovative technologies
Talent

Positioned to contribute more value for customers
Bill Wood
President, Composite Materials
COMPOSITE MATERIALS
“AT A GLANCE”

- € 1.2 bn Net sales 2015
- ~ 3,000 Headcount
- 19 Industrial sites

3 main market segments:

Civil aircraft
- Large commercial transport
- Business jets
- Regional jets
- Rotorcraft

Military and space
- Fighter jets
- Transports
- Rotorcraft
- Unmanned vehicles
- Launch vehicles

Industrial
- High-performance cars / Motorsport
- Oil and gas
- Wind energy

% of 2015 Net Sales
HOW ARE COMPOSITE MATERIALS AND PARTS MADE

Carbon Fiber + Formulated Resin = Composite Material

Solvay's high-value positions

Carbon Fiber Raw Materials
Formulated Resin Raw Materials

Carbon Fiber
Formulated Resin
Composite Materials
Structural Adhesives
Application Engineering

Plant Fabrication (Tier 1)
(Tier 2)
(Tier 3)

Composite Part (Wing)

Aircraft OEM

Finished Wing
WHERE ARE COMPOSITES USED

Aerospace: primary and highly loaded structures

- Empennage
- Wing
- Helicopter Structure & Blades
- Engine Fan Blades & Cases
- Fuselage
WHERE ARE COMPOSITES USED

Aerospace: secondary structures and interiors

- Structures
- Landing Flaps, Other Wing Moveables, Fairings
- Interior Sidewalls & Ceilings
- Structures Engine Nacelles
- Interior Stowbins
OTHER MARKETS WHERE COMPOSITES ARE USED

High-performance automotive

Wind energy, rail, …
WHAT BENEFITS DO COMPOSITES BRING

Fundamental Value of Composites

- Lightweighting
- Aerodynamics
- Fatigue life
- Corrosion resistance
- Lean manufacturing lower part cost
- Increased passenger comfort
- Life-of-program maintenance costs
AEROSPACE GROWTH DRIVERS INCREASING CIVIL AIRCRAFT DEMAND

MARKET FUNDAMENTALS

- **Growth** in passenger traffic…historical and forecast growth of 4.5% / year
- Airline profitability and resilience…demand for more fuel-efficient aircraft
- **Emerging market** growth
- Retirement of older and less-efficient aircrafts
- Record high aircraft backlogs… 8+ years

GLOBAL AIRCRAFT FLEET (UNITS)

Compelling drivers of long-term civil aircraft build rate increases and new program performance improvements
AEROSPACE COMPOSITES GROWTH DRIVERS
INCREASING USE ON NEW AIRCRAFT

USE OF COMPOSITE ON AIRCRAFTS

Military Programs

Commercial Programs

Percentage of Composites

0% 10% 20% 30% 40% 50% 60%

2016 Capital Markets Day
September 29, 2016
HOW WE WIN…

SOLVAY’S UNIQUE STRENGTHS

- Recognized for our technology leadership
- Extensive and proprietary materials portfolio
- Broad materials qualification heritage
- Providing, capturing and sustaining value

Delivering value through strategic customer collaborations
KEY PROGRAMS DRIVING SOLVAY AEROSPACE GROWTH

NEW PROGRAMS RAMPING UP
- F-35 Joint Strike Fighter
- Boeing 777X Empennage
- Boeing 787 & 777X Secondary Structure
- LEAP engine (737MAX and A320neo)
- Hondajet Business Jet
- Bombardier Cseries
- COMAC ARJ21 Regional Jet

CUSTOMER COLLABORATIONS ON NEW DEVELOPMENT PROGRAMS
- GE-9X Engine used on Boeing 777X
- New Russian and Chinese Civil Aircraft
- U.S. Long Range Strike Bomber

Positions on most major aircraft programs
EXCELLENCE AND SYNERGIES DRIVE ADDITIONAL VALUE

COMMERCIAL AND MANUFACTURING EXCELLENCE

• Debottlenecking thermoplastic lines
• Pricing and portfolio management
• Distribution synergies
• Cost-basis improvements via excellence projects

COMMERCIAL SYNERGIES WITH SPECIALTY POLYMERS

• Thermoplastic composites
• Competitiveness via polymer integration
• Boeing/Airbus interiors with foam core
• Selling synergies in aircraft

2016

2018

2020+
SOLVAY WELL-POSITIONED FOR THE FUTURE OF COMPOSITES

Entry into transport
- Military aircraft
- Start of some civil aircraft

1970

Current applications
- Adoption on wing/fuselage
- Cost advantage with scale and vertical integration

2000 - 2020

Innovations under development
- Industrial scale and economics
- Value creation

2020+

Solvay’s complementary technologies and competencies enable us to meet future industrialization challenges!
MORE SUSTAINABLE MOBILITY

Augusto Di Donfrancesco
President, Specialty Polymers
SOLVAY ADVANCED MATERIALS IN AERO
AN UNMATCHED PORTFOLIO OF SOLUTIONS

PRIMARY, SECONDARY STRUCTURES
- Fuselage
- Empennage
- Wing moveables

CABIN & CARGO
- Seats
- Ductings
- Galleys

MECHANICAL COMPONENTS
- Brackets
- Clip nuts
- Attachments

W&C, FLUID TRANSFER AND SEALINGS
- Fuel lines
- Fluids
- Power, transmission cables
UNIQUE CUSTOMER VALUE CREATION CAPABILITIES

Unique expertise from molecules to composites

One-team approach to customers

Cutting edge solutions

TegraCore™ STRUCTURAL FOAMS

THERMOPLASTIC COMPOSITES

COMPOSITES
SPECIALTY POLYMERS

STRATEGIC PARTNER

Lower cost of ownership
Accelerated time to market
Increased production rates
Recyclability
New Industry Paradigm:
• Sustainability
• Shared mobility
• Connectivity

• Regulations driving CO₂ emission reductions
• Car sharing services and self-driving cars
• Safety: Zero casualties

SOLVAY ENABLING SOLUTIONS

Lightweighting

Powertrain efficiency

Electrification
> 1 MILLION ELECTRIC VEHICLES ON THE ROAD TODAY!

ELECTRIC VEHICLES ON THE ROAD vs. BATTERY COST

Source: Bloomberg

Number of sold xEV (total)
Number of sold xEV (China only)
Costs in $ per kWh

2016 Capital Markets Day
September 29, 2016
> 1 MILLION ELECTRIC VEHICLES ON THE ROAD TODAY!

SOLVAY

SOLUTIONS in today’s vehicles

- **Solef® PVDF**
- **Li-Ion battery materials**
- **Ryton® PPS, KetaSpire® PEEK**
- **for lightweight battery packs**
- **Amodel® PPA, Ryton® PPS for electric motors and parts**

Solvay partnering with leading OEMs on current and future electrification platforms
~10 MILLION ELECTRIC VEHICLES BY 2020

DEPLOYMENT SCENARIOS FOR THE STOCK OF ELECTRIC VEHICLES TO 2030 vs. BATTERY COSTS

Cost reduction by factor of 4

Source: Bloomberg
ENABLING

LESS

MORE

Solvay poised to take full advantage of this opportunity
More Solutions to Automotive's Sustainability Challenges

Composites Enable

- Lightweighting
- Electrification
+ Design freedom
SOLVAY IS UNIQUELY POSITIONED TO ACCELERATE COMPOSITES ADOPTION

All the building blocks and unique core competences to integrate them
UNIQUE CORE COMPETENCES: KEY FOR COMPOSITES

Competences
- Understanding of application-specific needs
- Collaboration with customers
- Knowledge and infrastructure to integrate design, materials & processes

Outcomes
- Deliver production-ready solutions
- Shorten adoption cycle
- Lower business & technology risk
- Capture larger fraction of value pool
SOLVAY’S VISION OF COMPOSITES
ADOPTION IN AUTOMOTIVE

Be a leading supplier of differentiated composite materials solutions

OUR VISION

OUR APPROACH

- Exploit composites’ value beyond just light-weighting
- Make composite parts cost-competitive vs metals
- Leverage Solvay competences to develop “ecosystem”: design, recycling and repair
Broadly used for aircraft and supercars but traditionally with limited suitability for high volume automotive

Solvay has developed unique technologies that enable automation, faster cycle time and use of existing metal forming assets
THERMOSET COMPOSITES: A FULL COMPOSITE CHASSIS

Developed broad set of material and manufacturing technologies to manufacture concept chassis

Leveraged investment in engineering firm to exploit value of composites through design

First step of a journey towards a composite-centric chassis used at higher volume
THERMOPLASTIC COMPOSITES
ADDRESSING INDUSTRY GAPS

- Fast cycle time
- Assembly
- Recyclability

Working on multiple insertion opportunities with OEMs and Tier 1s

Leveraging Composite Materials’ & Specialty Polymers’ world-class expertise, assets and portfolio to deliver top-line synergies
A clear approach based on our understanding of customer needs and technology roadmap.
MORE SUSTAINABLE MOBILITY
APPENDIX
SOLVAY’S KEY CUSTOMERS WITHIN AERO SUPPLY CHAIN

Tier 1
- Spirit Aerosystems
- FACC
- GKN
- Triumph
- Orbital ATK

Next Tiers
- Strata
- BAE Systems
- UTC Aerospace Systems
- Turkish Aerospace Ind
- Honeywell

OEM’s
SOLVAY’S KEY AERO PROGRAM POSITIONS

<table>
<thead>
<tr>
<th>Program</th>
<th>OEM order book</th>
</tr>
</thead>
<tbody>
<tr>
<td>777X</td>
<td>305</td>
</tr>
<tr>
<td>F-35</td>
<td>200</td>
</tr>
<tr>
<td>787</td>
<td>700</td>
</tr>
<tr>
<td>MS-21</td>
<td>175</td>
</tr>
<tr>
<td>A380</td>
<td>125</td>
</tr>
<tr>
<td>CSeries</td>
<td>300</td>
</tr>
<tr>
<td>C 919</td>
<td>350</td>
</tr>
<tr>
<td>A350</td>
<td>775</td>
</tr>
<tr>
<td>737 MAX</td>
<td>3,200</td>
</tr>
<tr>
<td>A400M</td>
<td>150</td>
</tr>
<tr>
<td>Hondajet</td>
<td>n/a</td>
</tr>
<tr>
<td>737</td>
<td>1,200</td>
</tr>
<tr>
<td>A320neo</td>
<td>4,780</td>
</tr>
<tr>
<td>SSJ 100</td>
<td>110</td>
</tr>
</tbody>
</table>

Source: Industry backlog data as of Sept 2016

This may contain forward-looking information. Actual results may differ materially.
Roger Kearns
began his career with Solvay in the USA in 1986. He then held various manufacturing, technical, marketing, and business management positions before moving several times to Belgium and Thailand. In 2004, he was appointed President of Solvay Advanced Polymers. From 2008 to 2012 he was General Manager for the Asia-Pacific region and was based in Bangkok, Thailand.

Since 2008 he has been a member of the Executive Committee of Solvay. In January 2013, he relocated to Solvay’s Headquarters in Brussels, Belgium. In 2015, he additionally took on leadership of the integration of Cytec into Solvay.

He holds a degree in chemical engineering from the Georgia Institute of Technology and an MBA from Stanford University.
Bill Wood began his career as manufacturing manager at Fiberite Composite Materials in California. He then held various positions in manufacturing and engineering management, and then in general business management, in various locations in the U.S. After Fiberite was acquired by Cytec, he was appointed Managing Director for Cytec’s Engineered Materials division in Europe and was an ex-pat in the U.K. from 1999 until 2002 in this role. Upon his return to the U.S., he assumed general management responsibility for Cytec Engineered Materials’ Americas and Asia Pacific divisions.

Since 2009 he has been President of Cytec Aerospace Materials, a member of the Cytec Executive Leadership Team, and an officer of Cytec Industries. Upon Solvay’s acquisition of Cytec he became President of the Composite Materials GBU.

Bill Wood, a US national is a Summa Cum Laude graduate from the University of Utah with a B.S. in Chemical Engineering. He received an M.B.A. from the Phoenix University.
Augusto Di Donfrancesco
began his Solvay career in 1987 as a process engineer in Rosignano, Italy. He has held multiple roles within the Solvay Group in Production, Technology and Commercial Operations in the Chemicals and Plastics divisions. In 2005 he moved to Buenos Aires, Argentina, to become the General Manager of Solvay Indupa, a public company listed in the Buenos Aires Stock Exchange with PVC and caustic soda production plants in Argentina and Brazil.

Augusto Di Donfrancesco, an Italian national, graduated from Pisa University in 1985 with a Bachelor’s degree in Chemical Engineering.

In 2009 he came back to Brussels as General Manager of Specialty Polymers, and finally returned to Italy in 2011 to assume his current role as President of the newly created Global Business Unit Solvay Specialty Polymers.
Carmelo Lo Faro

has full P&L responsibility for the Industrial Business Line of Solvay Composite Materials. He is a member of Solvay Composite Materials Leadership Team and is also responsible for Strategy and Business Development. Carmelo began his career with ICI, as a Research Scientist developing advanced composite materials. He joined Cytec in 2001 and, since then, has held positions of increasing responsibility including Six Sigma Master Black Belt, Product Development Manager, Technology Director, VP of Technology and Chief Technology Officer while living in Europe and in the United States.

Throughout his career, Carmelo has been instrumental in introducing innovative materials and processes on multiple aerospace, defense and automotive programs. He has also developed and executed several strategic partnerships with customers, suppliers and the academic community.

Carmelo holds a Doctorate of Science degree in Material Science, a Master’s degree in Mechanical Engineering from Catania University and an MBA from Arizona State University.
Maria Alcon Hidalgo
Head of Investor Relations
+32 2 264 3694
E-mail: maria.alconhidalgo@solvay.com

Kimberly Stewart
Head of Investor Relations (effective October 1, 2016)
+32 2 264 3694
E-mail: kimberly.stewart@solvay.com

Jodi Allen
Investor Relations, Senior Manager
+1 973 357 3283
E-mail: jodi.allen@solvay.com

Geoffroy Raskin
Investor Relations, Senior Manager
+32 2 264 1540
E-mail: geoffroy.raskin@solvay.com

Bisser Alexandrov
Investor Relations, Manager
+32 2 264 3687
E-mail: bisser.alexandrov@solvay.com

Valérie-Anne Barriot
Retail shareholder relations Manager
+32 2 264 1622
E-mail: valérie-anne.barriot@solvay.com

Laetitia Van Minnenbruggen
Events Coordinator
+32 2 264 3025
E-mail: laetitia.vanmiennbruggen@solvay.com

Gwendoline Ribeyron
Events Coordinator
+32 2 264 3025
E-mail: gwendoline.ribeyron@solvay.com