

Low Temperature Peroxide Curable

Tecnoflon® PL 458 is a new generation low post cure peroxide curable fluoroelastomer. Tecnoflon® PL 458 exhibits both excellent low temperature flexibility (TR $_{10}$ = -24 °C) and an outstanding resistance to a variety of chemicals. As all other Tecnoflon® peroxide curable grades, it exhibits excellent processability; moreover it needs very short post-curing cycles.

Some of the basic properties of Tecnoflon® PL 458 are:

- Excellent low temperature flexibility
- Low volume swell in methanol-based fuels
- Low post cure
- Superior mould flow
- · Lack of mould fouling
- Excellent mould release

Tecnoflon® PL 458 can be used for injection, compression and transfer molding of O-rings, gaskets and seals. Tecnoflon® PL 458 can be combined with the cure system and other typical fluoroelastomer compounding ingredients. Mixing can be accomplished with two roll mills or internal mixers.

Tecnoflon® PL 458 can be extruded into hoses or profiles and can be calendered to make sheet stocks or belting. Finished goods may be produced by a variety of rubber processing methods.

Handling and safety

Normal care and precautions should be taken to avoid skin contact, eye contact and breathing of fumes. Smoking is prohibited in working areas. Wash hands before eating or smoking. For complete health and safety information, please refer to the material safety data sheet.

Basic characteristics of the raw polymer are as follows:

Property	Typical Value	Unit	Test Method	
ML (1+10') at 121 °C	23	MU	ASTM D1646	
Fluorine content	66	%	Solvay Internal Method – NMR	
Specific gravity	1.83	g/cm ³	ASTM D792	
Colour	Translucent			
Packaging / Form	Slabs			
Solubility	Ketones and esters			

Low Temperature Peroxide Curable

Ivnical	nronerties
I y picai	properties

Test Compound	Typical Value	Unit	Test Method
Tecnoflon® PL 458	100	phr	
Luperox® 101XL-45	3	phr	
Drimix® TAIC (75%)	4	phr	
ZnO	5	phr	
N-990 MT Carbon Black	30	phr	
IN-990 IN F CARDON Black	30	but	

Property	Typical Value	Unit	Test Method
Mooney viscosity ML (1+10') at 121 °C	33	MU	ASTM D1646
ODR 12 min at 177°C arc 3°			ASTM D1646
Minimum torque	8.8	lb·in	
Maximum torque	151	lb∙in	
t _{s2}	0.8	min	
t' ₅₀	1.4	min	
t' ₉₀	1.8	min	
MDR 6 min at 177°C arc 0.5°			ASTM D6601
Minimum torque	0.97	lb·in	
Maximum torque	30.2	lb∙in	
t _{s2}	0.4	min	
t' ₅₀	0.6	min	
t' ₉₀	0.8	min	
Press cure: 6 min at 170 °C, (1+4) h at 230 °C			
100 % Modulus	7.8	MPa	ASTM D412C
Tensile strength	20.8	MPa	
Elongation at break	182	%	
Hardness	73	ShoreA	ASTM D2240
Compression set 25 % deformation, 70 h at 200 °C			ASTM D395 method B
O-ring #214	18	MPa	
Temperature retraction			ASTM D1329
TR ₁₀	-24	%	

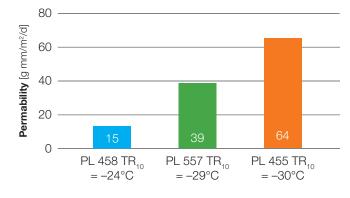
Low Temperature Peroxide Curable

Fluid resistance

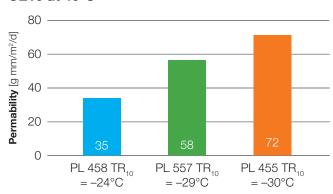
Property	Typical Value	Unit	Test Method
Methanol, 70 h at 60 °C			
Δ Tensile strength	-35	%	
Δ Elongation at break	-14	%	
Δ Hardness	-6	Shore A	
Δ Volume	10	%	
Methanol, 168 h at 23 °C			
Δ Tensile strength	-37	%	
Δ Elongation at break	-22	%	
Δ Hardness	-4	Shore A	
Δ Volume	9	%	
Ethanol, 70 h at 60 °C			
Δ Tensile strength	-26	%	
Δ Elongation at break	-11	%	
Δ Hardness	-3	Shore A	
Δ Volume	6	%	
Fuel C, 168 h at 23 °C			
Δ Tensile strength	-29	%	
Δ Elongation at break	-15	%	
Δ Hardness	-2	Shore A	
Δ Volume	6	%	
M15 (Fuel C/Methanol 85/15), 16 h at 23 °C			
Δ Tensile strength	-	%	
Δ Elongation at break	-	%	
∆ Hardness	-	Shore A	
Δ Volume	6	%	
M15 (Fuel C/Methanol 85/15), 168 h at 23 °C			
Δ Tensile strength	-44	%	
Δ Elongation at break	-26	%	
Δ Hardness	-5	Shore A	
Δ Volume	14	%	
M85 (Fuel C/Methanol 15/85), 168 h at 23 °C			
Δ Tensile strength	-46	%	
Δ Elongation at break	-26		
Δ Hardness		Shore A	
∆ Volume		%	
△ volume		%	

Low Temperature Peroxide Curable

Typical Value	Unit Test Method
-37	%
-18	%
-8	Shore A
14	%
-44	%
-22	%
-8	Shore A
19	%
-44	%
-26	%
-5	Shore A
14	%
	-37 -18 -8 14 -44 -22 -8 19 -44 -26 -5


Low Temperature Peroxide Curable

Comparison with other Tecnoflon® low T grades swelling


Property	Unit	PL 458	PL 557	PL 455	Test Method
Fluorine content	% wt	66	65.5	64.5	
TR ₁₀	°C	-24	-29	-30	ASTM D1329
FAM A, 70 h at 60°C					
∆ Volume	%	14	17	25	
FAM B, 70 h at 60°C					
Δ Volume	%	19	27	41	
Fuel C, 168 h at 23 °C					
Δ Volume	%	6	8	9	
M15 168 h at 23°C					
∆ Volume	%	14	24	40	

Permeability to fuel mixtures (M15 and CE10)

M15 at 21°C

CE10 at 40°C

www.solvay.com

SpecialtyPolymers.EMEA@solvay.com | Europe, Middle East and Africa SpecialtyPolymers.Americas@solvay.com | Americas SpecialtyPolymers.Asia@solvay.com | Asia Pacific

Material Safety Data Sheets (MSDS) are available by emailing us or contacting your sales representative. Always consult the appropriate MSDS before using any of our products. Neither Solvay Specialty Polymers nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Solvay's products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Solvay's recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right. All trademarks and registered trademarks are property of the companies that comprise Solvay Group or their respective owners.