Developing mRNA for therapy

Katalin Karikó, PhD

University of Pennsylvania, Philadelphia

2022 Laureate of the Science for the Future Solvay Prize

Solvay Prize Lecture March 29, 2022

Visiting Brussels

1977

Visiting Brussels

1977

2022

SEANCE SOLENNELLE DE REMISE DES INSIGNES DE DOCTEURE HONORIS CAUSA THE SOLVAY PRIZE

The Solvay Prize 2022 is awarded to **Professor Katalin Karikó**

1955-60s growing up in Hungary

1968-69 competing in science

1968 – Csillebérc - Camp for 7th graders, winners of the regional biology competition

1960-70s

Albert Tóth biology teacher

Zoltán Csobay chemistry teacher

Albert Szent-Györgyi

János Selye

1973-85

Biological Research Center Hungarian Academy of Sciences

The Lipid Lab

Biological Research Center Hungarian Academy of Sciences

Tibor Farkas

Éva Kondorosi

Acta Biochim. et Biophys. Acad. Sci. Hung. Vol. 20 (3-4), pp. 203-211 (1985)

Liposome Mediated DNA-transfer into Mammalian Cells

G. SOMLYAI, É. KONDOROSI, K. KARIKÓ,* E. G. DUDA

Institute of Biochemistry and *Institute of Biophysics, Biological Research Center, Szeged, Hungary

Ernö Duda

The RNA Lab

Biological Research Center Hungarian Academy of Sciences

The JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 251, No. 16. Issue of August 25, pp. 5043-5053, 1976 Printed in U.S.A.

Mechanism of Formation of Reovirus mRNA 5'-terminal Blocked and Methylated Sequence, m⁷GpppG^mpC

(Received for publication, March 26, 1976)

YASUHIRO FURUICHI, S. MUTHUKRISHNAN, JENÖ TOMASZ^{*}, AND AARON J. SHATKIN From the Roche Institute of Molecular Biology, Nutley, New Jersey 07110, and the *Institute of Biophysics, Szeged, Hungary

• 1961	Discovering mRNA
• 1978	Isolated mRNA delivery into mammalian cells
• 1984	Synthesizing mRNA in vitro
• 1990s -	Optimizing performance of the mRNA
• 2010s -	Optimizing formulation for mRNA delivery
• 2021	FDA approval of COVID-19 LNP-mRNA vaccine

1961 - Discovery of mRNA

mRNA: the labile intermediate carrying the message from the DNA to ribosome

1984 – Synthesizing mRNA in test tube

1984 – Synthesizing mRNA in test tube

2022 Solvay Prize Lecture

Challenges for the human use of mRNA in 1990s

mRNA

- unstable, degrade
- amount of translated protein is too little
- cause inflammation

Timeline of key milestones for mRNA and lipid nanoparticle development

Developing mRNA for therapy

Medical School of University of Pennsylvania, Philadelphia

1998-2000 - Evaluating gag mRNA in human dendritic cells

J Immunol 2000; 165:4710-4717

HIV Gag mRNA Transfection of Dendritic Cells (DC) Delivers Encoded Antigen to MHC Class I and II Molecules, Causes DC Maturation, and Induces a Potent Human In Vitro Primary Immune Response¹

Drew Weissman,²* Houping Ni,* David Scales,* Annie Dude,* John Capodici,* Karen McGibney,* Asha Abdool,* Stuart N. Isaacs,* Georgetta Cannon,* and Katalin Karikó[†]

Inflammatory response TNF-α

Immunity 2005, 23: 165

2005 - Natural RNAs are not equally potent activators of DCs

Immunity 2005, 23: 165

2005 - Natural RNAs are not equally potent activators of DCs

100+ Naturally-occurring modified nucleosides in RNA

DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, edited by Henri Grosjean

2005 - Incorporation of modified nucleotides into RNA by in vitro transcription

Immunity 2005, 23: 165

2005 – Synthesizing modified mRNA – Measurement of inflammatory response

Immunity 2005, 23: 165

2005-08 Modified uridine-containing mRNA is non-immunogenic, Ψ-mRNA translates the best

Immunity 2005, 23: 165

2005-08 Modified uridine-containing mRNA is non-immunogenic, Ψ-mRNA translates the best

Mol. Therapy 2008, 16: 1833

Immunity 2005, 23: 165

2012 Pseudouridine-modified mRNA: non-inflammatory, translates into functional EPO

Mol. Therapy 2012, 20: 948

2013 BioNTech

Optimizing mRNA performance by multiple modifications

The path to the development of a new class of active substances

Modification of the mRNA structural elements

Sahin U, Karikó K, Türeci Ö. mRNA based therapeutics - developing a new class of drugs, Nat Rev Drug Disc, 2014.

Karikó, K et al D. (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. *Immunity* 23, 165-175; Holtkamp S et al (2006), Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. *Blood* 108, 2006.

Therapeutic efficacy of CD3xCLDN6 RiboMAB-encoding mRNA

LNP-formulated mRNA (3 µg) (Cap 1) MANNON A 100 uman T ce or 200 µg/kg rec. protein nature. medicine Translation VOLUME 23 | NUMBER 7 | JULY 2017 recombinant protein/vehicle IP Elimination of large tumors 24 26 28 31 33 35 38 40 42 70 days in mice by mRNA-encoded OV-90 PBMC mRNA IV Folding & secretion Median tumor volume (mm 3) SC 1.500bispecific antibodies Christiane R Stadler¹, Hayat Bähr-Mahmud¹, Leyla Celik¹, 1,000-Bernhard Hebich^{1,5}, Alexandra S Roth^{1,5}, René P Roth^{1,5} Katalin Karikó¹, Özlem Türeci² & Ugur Sahin^{1,3,4} CD3 x TAA bi-(scFv). CD3xCLDN6 mRNA rCD3xCLDN6 protein 1* 500-_uc mRNA Vehicle control 20 30 40 10 50 Days post tumor inoculation

Humanized NSG mice

- Elimination of advanced xenograft tumors upon three weekly treatments of mice with 3 µg RiboMAB-encoding mRNA
- mRNA (3 injections) as effective as the corresponding recombinant bsAb (10 injections)

Intratumor injection of mRNA for cancer treatment

Science Translational Medicine

Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models

Christian Hotz^{1†}, Timothy R. Wagenaar²*[†], Friederike Gieseke¹, Dinesh S. Bangari², Michelle Callahan², Hui Cao², Jan Diekmann¹, Mustafa Diken^{1,3}, Christian Grunwitz¹, Andy Hebert², Karl Hsu², Marie Bernardo², Katalin Kariko¹, Sebastian Kreiter^{1,3}, Andreas N. Kuhn¹, Mikhail Levit², Natalia Malkova², Serena Masciari², Jack Pollard², Hui Qu², Sue Ryan², Abderaouf Selmi³, Julia Schlereth¹, Kuldeep Singh², Fangxian Sun², Bodo Tillmanı Tatiana Tolstykh², William Weber², Lena Wicke¹, Sonja Witzel³, Qunyan Yu², Yu-An Zhang², Gang Zheng², Joanne Lager^{2‡}, Gary J. Nabel^{2§}, Ugur Sahin^{1,3}*[†], Dmitri Wiederschain^{2†||}

Sci. Transl. Med. 13, eabc7804 (2021)

interleukin-12 single chain mRNA interferon-alpha mRNA **GM-CSF mRNA** IL-15 sushi mRNA

Cytokine mRNA mixture

 1.0×10^{4} photons s⁻¹ cm⁻²

ClinicalTrials.gov Identifier: NCT03871348

Induction of tolerization with autoantigen-encoding mRNA

Science

A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis

Christina Krienke^{1,2}, Laura Kolb^{1,*}, Elif Diken^{1,*}, Michael Streuber¹, Sarah Kirchhoff¹, Thomas Bukur¹, Özlem Akilli-Öztürk¹, Lena M. Kranz³, Hendrik Berger³, Jutta Petschenka^{1,4}, Mustafa Diken^{1,3}, Sebastian Kreiter^{1,3}, Nir Yogev^{5,6}, Ari Waisman^{2,5}, Katalin Karikó³, Özlem Türeci^{3,7}, Ugur Sahin^{1,2,3}†

Science (2021) 371: 145

2017- Generating m1Ψ-mRNA encoding glycoproteins of Zika virus

2017 ZIKV modRNA-LNP protects macaques from ZIKV challenge

2020 Clinical development of BNT162b2 covid-19 mRNA vaccine

VEGF-A mRNA treatment of heart failure

Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a Phase 2a Clinical Trial - *Molecular Therapy: Methods* & *Clinical Development* 2020, 18:464-472

> First patient injected: February 5, 2018

January 2022

ClinicalTrials.gov Identifier: NCT03370887

Phase 2 study of mRNA therapeutic that encodes for vascular endothelial growth factor-A (VEGF-A) (AZD8601) met the primary endpoint of safety and tolerability

CAS-9 mRNA for treatment of patients suffering from ATTR – by Intellia

NTLA-2001 delivers sgRNA and Cas9 into the nucleus, which precisely edit and inactivate the *TTR* gene

Change in Serum TTR Concentration in Patients Who Received 0.3 mg/kg

N Engl J Med 2021; 385:493-502

Thanks to all of those who have helped me on my journey

